Archives du jour : 18 avril 2019


Cet article fait partie d’une série de posts destinés à expliquer le fonctionnement de Azure ML. Vous pouvez retrouver les précédents articles en cliquant sur ces liens: http://www.netdaf.com/introduction-au-machine-learning/ http://www.netdaf.com/azure-ml-premiere-experience/ http://www.netdaf.com/azure-ml-importer-et-exporter-des-donnees/ http://www.netdaf.com/azure-ml-preparer-les-donnees/ Supprimer les valeurs aberrantes.   Les valeurs aberrantes sont des valeurs qui sont très éloignées de la masse des valeurs du Dataset,en les conservant on peut fausser les résultats des algorithmes.   Il est judicieux de traiters ces valeurs, soit en les supprimant purement et simplement, soit en les modifiant.   Le module Clip Values permet de détecter ces valeurs, en sélectionnant les colonnes à analyser,puis de les supprimer ou  de les modifier.     Normalisation   De nombreux algorithmes fonctionnent mieux lorsque les données de l’ensemble des colonnes, sont à la même échelle. Lorsqu’il existe de grandes différences dans les ordres de grandeur entre les colonnes (par exemple une colonne avec des valeurs s’étendant de 0 à 10 et une autre avec une plage de 10 000 à 10 000 000), il sera nécessaire normaliser les données.   Pour procéder à cette normalisation, il faut utiliser le module Normalize Data.     Vous pouvez sélectionner les colonnes à normaliser, par type de valeurs ou par sélection simple, puis choisir […]

Azure ML : Préparation avancée des données